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STABILITY ANALYSIS IN AN INVENTORY MODEL

In this paper, we make a synthesis about the stability analysis in inventory models.
In particular, we prove the applicability of the strong stability method to inven-
tory models. We show the strong v—stability of the embedded Markov chain in
an (R, s, S) periodic review inventory model with respect to the disturbance of the
demand distribution. The case of the (R, .S) model is also highlighted.

INTRODUCTON

F.W. Harris’s paper [6] published in 1913 was the first contribution to inventory
research. Harris has considered a deterministic case. Stochastic inventory models, in
witch we consider demand as a stochastic process, were introduced in early 1950s (see
[2]). Since, thousands of papers have treated this subject and this field still a wide area
for research. For a recent reference we suggest [10].

A stochastic inventory model can include a large number of parameters, each can
take many values and lot of them can be stochastic. Inventory problems are often very
complicated and we need to use approximations to resolve them. Therefore, it is very im-
portant to justify these approximations and to estimate the resultant error. Furthermore,
model parameters are imprecisely known because they are obtained from empirical data
by statistical methods. This show the importance of the study of the stability because
this can help us to test the sensitivity of the mathematical model to perturbations and
to see whether or not it is a good representation of the real system.

Inventory models are the first stochastic models for witch monotonicity properties
where proved (see [7, 11]). In 1969, Boylan have proved a robustness theorem for inven-
tory problems by showing that the solution of the optimal inventory equation depends
continually on its parameters including the demand distribution [4]. Recently, Chen and
Zheng (1997) have showed that the inventory cost in an (R,s,S) model is relatively
insensitive to the changes in D = § — s [5].

In this paper, we apply the strong stability method developed in early 1980s [1]. In
addition to the qualitative affirmation of the continuity, the strong stability method
allows us to obtain quantitative estimates with an exact computation of constants. For
basic definitions and results on this method, see for example [9].

In section (1), we describe our model. In section (2), we introduce notations, define
the strong stability criterion and give a sufficiency theorem [1]. The main results of
this paper are presented in section (3). Finally, we give in conclusion some research
perspectives.
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1. MODEL DESCRIPTION

Consider the following single-item, single-echelon, periodic review inventory model.
Inventory level is inspected every R time units and if, at review moment, the inventory
level is bellow or equal to s we order so much items to raise the inventory level to S.
Suppose that orders arrives immediately. In period n, total demand is &,. Assume
that &,, n = 1,2, ... are independent and identically distributed random variables with
common probabilities,

a, =P =k), k=0,1,..
Also, denote by F¢ their common distribution function. This model can be found in the
earlier stochastic inventory literature (see for example [2]).

A special case of this model is the well known (R, S) model which correspond to the
case s = S — 1. In the (R, S) system, the inventory level is inspected every R time units,
and, if necessary, we order so much items to raise the inventory level to S.

Consider another (R, s, S) inventory model with the same structure, but with demands
&, n=1,2,.. having common probabilities

af, =Pt =&); k=01,
Let (X, )n>1 and (X, )n>1 the Markov chains representing the on-hand inventory level at
the end of periods in the two models and denote by P and @ their respective transition
operators and by E = {0,1,..., S} their common state space.

Also, denote by (Y, )n>1 and (Y!)n>1 the Markov chains representing the on-hand
inventory level at the end of periods in the two models when using an (R,.S) ordering
policy.

2. STRONG STABILITY CRITERION

Let X = (X¢,t > 0), a homogeneous Markov chain with values in a measurable space
(E, €), (where we assume that the o-algebra € is denumerably engendered), given by a
regular transition kernel P(z, A), ¢ € E, A € € and having a unique invariant measure
.

Denote by m@& (m&+) the space of finite (nonnegative) measures on €, f& (f&*) the
space of bounded measurable (nonnegative) functions on E.

Consider in the space m€, the Banach space M = {u € (M) : ||u|| < oo} with norm
||| compatible with the structural order in m€, i.e. :

leall < llpa + po| for i € MM* i =1,2.
lpall < [lpa — pel| for p; € MF,i=1,2 and p1 L po.
|u[(E) < kl|p|| for p € oM.

where |u| is the variation of the measure u, k is a finite positive constant and 9™ =
MN (meET).
We introduce in mé&, the special family of norms

lully = /E o(a)|(dz), Vs € mE

where v is a measurable function bounded from bellow by a positive constant, (not
necessary finite) on E.
So, the induced norms on spaces f& and 91 will have the following forms :

1Pl = sup{ Pl o < 13 = sup (v / Pz, dy)lv(y),

Ifllo = sup{|ufl, [ullo <1} = Sup( ()" £ ().
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We associate to every transition kernel P(z, A) in the space of bounded linear opera-
tors, the linear mappings £p : m& — m€ and £p : f& — f&, witch values for p € m€
and f € f€ are respectively :

uP(4) = £p(1)(4) = / u(dz)P(z, 4), VA€,

E
Pf@) = (1)) = [ P@d)f), Ve B

and to every function f € f€&, we associate the linear functional f : u — pf such that :

uf = [ ) s(a),
For p € m€& and f € f€&, f o u is the transition kernel having the form :
f(@)u(A),z € E,A€ €.

Definition 1. We say that the Markov chain X verifying || P|| < oo is strongly v—stable,
if every stochastic kernel Q in the neighborhood {Q : [|Q — P||, < €} admits a unique
stationary measure v and :

|lv = 7|y — 0 when IQ — Pllv — 0.

Theorem 1. The Harris recurrent Markov chain X wverifying ||P|| < oo is strongly
v-stable, if the following conditions are satisfied :

1. 3aemt,3h e fEt such that : Th >0, al =1, ah >0,
2. T = P — hoa is a nonnegative kernel,
3. 3 p < 1 such that, Tv(z) < p v(z),Vz € E.

where 1 is the function identically equal to 1.

3. STRONG v—STABILITY OF THE (R, s,S) MODEL

Define on E the o—algebra & engendered by the set of all singletons {j}, j € E.
Consider the function v(k) = 8%, 8 > 1 and define the norm

lelly =Y v(@)pl({5}), Y € m€
JEE
Consider the measure

a({s}) = o = Ry,

M — 1 #0<i<s,
WY o He<ix b,

and the measurable function

Lemma 1. X is a Harris recurrent Markov chain.

Proof. From the definition of the (R, s, S ) policy it follows that
(S - §n+1)+ if Xn < S,
Xn+1 = +
(Xpn —&nt1)t i Xpn >s.
where (A)T = max(4,0). Observe that Xn41 depends only on X, and &1, where &y,

n > 1 are independent and identically distributed random variables and independent
from n. Thus, X is a homogenous Markov chain.
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The transition probabilities of the chain X from state ¢ to state j are given by
Yresar if0<i<sandj=0,

a5 if0<i<sand1<j<§,
Pj=4¢ Sie,ar ifs+1<i<Sandj=0,

i ifs+1<i<Sandl<j<i

0 ifs+1<i<Sandj>i+1.

Thus, X is irreducible and aperiodic. Then, it is Harris recurrent.
Now, we show this result

Lemma 2. The norm of the transition operator of the chain X is finite, i.e.,

[ Plls < o0

Proof. Let’s compute | P|,. We have

Pl, = sup Py ﬂ =sup(4, B
Pl ke{0,1,..,8} ﬂk Z d ( )
where
il i 1 0 S
A= sup freon Pk 6-7 = sup I i <k as— ,B]
ke{0,1,..,s} BF Jz:; / keior,. ) BF ; i ; j
. e 5-1 5-1 g1 '
=Y i+ asF =1-) ai+) afS=1+3 a (6" -1)

=g 5=1 =0 =0 =0

and

ke{s+1,..,S} =0 ke{s+1,..,S}

«
Il
>

<.
Il
ey

S oo
B=  sup gEZijﬂj = sup % (Zai+2a i

1 k=1 ) 1 S-1 )
- SUp s} GF <1+Zai (ﬂk_l_1)> < G+l 1+ ' a; (65—2_1))

ke{s+1,.,

=0 i=0
S—1
< 1—}—2@ (B57-1)=A
i=0
So, we have
S—-1 '
1Pl =14 a:; (85" —1) <1+Za1 1) <1+(5-1)<p5<
i=0
Lemma 3. Let 7 the stationary distribution of the chain X. Then
1
h=——r—=—->0
"EITHGS )

where H = 3> Fg™ is the renewal function associated to the cumulative function Fy
of the random wvariable &; .
Proof. Consider the Markov chain V' given by

Vo=85-X,

and denote by X, and V., the random variables distributed with the stationary distri-
butions of the Markov chains X and V respectively. From the definition of the (R, s, S)
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policy, we have
Ve { min(S, &nt1), ifV,>8-—s;
mH min(S, V, +&ny1), iV, < S—s.
If we denote by Fy the distribution function of the random variable V,, and we take it
as initial distribution for the chain V, then we obtain
Fy(z) = P(Vat1 <)
= P(min(S,&n+1) < v)P(Vy > S—8)+P(min(S, V+&nt1) < v|Vhp < S=$)P(V, < S—s)
For v < § — s, we obtain
Fy(v) = P41 < V)PV 2S=8)+ P(Va+&ny1 < 0|V < S—5)P(V, < S—5)
v—1
Fy(v) = P(€nt1 <0)P(Va 2 5 =5) + ) P(Va = j)P(ns1 <v —J)
j=0
= P(€n+1 < ’U)P(Vn >S5 - S) + (Fv * FE)(’U)
So, forallv < S —s
Fy(v) = CF¢(v) + (Fy * Fe)(v)
or
Fy :CFg-f-Fv*Fg
witch is a renewal type equation, where, C' = P(V,, > S —s) =1 — Fy (S — s).
Substitute Fy in the right side of the last equation
Fy = CF{ + (CFE + Fy * Fg) * Fe
Thus,
Fy = CFe + CF? + Fy « F}?
Substitute Fy again and again
Fy =CF; + CF? + CF® + Fy » F}®

Fy =CF+CF>+CF® +...+ CF{™ + Fy x F{™
n
Fy=C)> F'+FyxF"
i=1
> ng converges because Fy exists (and 0 < Fy < 1). This implies that Fg" — 0 as
n — o0o. Thus, Fy * Fg” — 0 as n — oo and we obtain

Fy(v) = CZng(U) =CH(v), forv<S§—s.
=1

Now, we aim to find the value of C. We have

il
C_l—Fv(S—s)—l—CH(S—s):>C(1+H(S—s))—1:>C—1+H(S~S)
Thus,
H(v)
— e <S8 —s.
Fy(v) TYHES —5)’ forv<8—s
Now, compute mh. We have
S s -4
whzth(i)zZmzl— Z m=1—P(Xe > 3)
i=0 i=0 i=s+1
H(S —5s)

:1—P(S—Voo>s):1—P(Voo<S—5):1_FV(S_S):1_1+H(5_5)'



134 BOUALEM RABTA AND DJAMIL AISSANI

So,

1
Wh—i—'_;H—(S_—S)>0.

Lemma 4. Denote by 1 the function identically equal to 1. Then
al=1 and ah >0

Also, the operator T'= P — hoc is nonnegative.

Proof. We have

8 [es) s 00 S—-1 o)
S ST DTS SRR S SR SO
§=0 i=S j=1 i=S §=0 i=0

Now, compute ah

S s
ah Z {iDh ZPOJ (G)=>_ Py
Jj= =0
[e] s oo S—1 [e’e]
:Zai—l—ZaS_jr—Zai—F Zaiz Za¢>0
i=S j=1 i=S

1i=S—s 1=S—s
Also, we can easily verify that

T(i, {§}) = Ty = Py — h(i)oy = {

so, T is a nonnegative kernel.

0 Ifo<i<s,
P;; Otherwise.

Lemma 5. Let

2 s
p= St Zazﬁ

Then Tv(k) < pu(k) for allk € E and p < 1, Vﬁ > 1.
Proof. Compute Tv(k) :

s
k) =Y Ti;v(5)
=0

If 0 <k < sthen:
Tv(k)=0
If s< k <8, then we have

E = L o0 K==l
B = Pl = a+> aif =Y ait+ > af
=t = j=1 i=k - i=0
o0 k-1 S 4
:Zai+ﬁkzaiﬁ_i:( ==+ Z a; 57" +Zazﬁ—’>ﬁk
i=k i=0

i=s+1

s+1 s+1 s+1
B B B
Also, for g >1

fo'e) k—1 ) s
& (Zi:kai + Zi:s-}—laz +Zai/8—i> ﬁk o (Zz s+1 aq +Za2ﬂ ),Bk “‘p’U( )
=0

R RO NAEDWE R

i=s+1 =0

Then, we can show this result
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Theorem 2. In the (R,s,S) inventory model with zero leadtimes, the Markov chain
X = (Xn)n>1 representing the inventory level at end of periods is strongly v—stable with
respect to a function v(k) = B* for all B> 1.

proof. To prove this result, we apply the operator’s approach [1]. Lemmas (1) and (2)
allow us to use theorem (1). All conditions for the strong stability (theorem (1)) are
satisfied and are given by the above results (lemmas (3),(4) and (5)).

This result means that a small perturbation of the demand probabilities generates only
a small deviation of the stationary distribution of embedded Markov chain X and there-
fore, a small deviation of the characteristics of the system depending on this distribution.
This fact allows us to use approximations on the demand probabilities.

The (R, S) model is a special case of the (R, s,S) one. It is widely used in practice.
From the above theorem, we can deduce this result

Corollary 1. In the (R, S) inventory model with zero leadtimes, the Markov chain Y =
(Yn)n>1 representing the inventory level at end of periods is strongly v—stable with respect
to a function v(k) = B* for all B > 1.

Proof. It suffice to take s =S — 1 in the above proofs.

CONCLUSION

We have proved the strong v—stability of the embedded Markov chain in the considered
inventory model. This allow us to justify approximations used in practice to analyse
such inventory systems. Furthermore, strong stability method can be used to obtain
quantitative estimates of the approximation error [8] and to measure its performance, we
can build an algorithm as in [3]. Also, other inventory models can be studied and the
result should be extended.
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